

Peter Karsai (peter.karsai@vamsoft.com, @peterkarsai)
Ciprian Benyi (ciprian.benyi@vamsoft.com)

mailto:peter.karsai@vamsoft.com
https://twitter.com/peterkarsai
mailto:ciprian.benyi@vamsoft.com

Background ... 3

Investigation .. 4

About our JavaScript spambot challenge .. 4

Initial data .. 4

Profiling the browser.. 6

Enter the headless browser .. 7

Conclusions ... 10

Possible responses ... 10

We’ve been through a few episodes with comment spam on the Vamsoft Community Forums, so

when in early May 2014 we started receiving a new wave, we just shrugged and attributed it to

another mislead soul posting links in hope of earning a few dollars with a spam affiliate program.

Comment spam and web form abuse in general is a well-known phenomenon on the Internet. It

primarily affects forums, blogs and other services that don’t require registration prior to posting.

Spammer robots—or “spambots” for short—frequently attack any form on a webpage that is

slightly reminiscent of a comment form. For all the mess they do, conventional wisdom of the

web developer community holds that spambots are relatively dumb programs, specially crafted

for extracting, populating and posting forms retrieved from the HTML source code of web pages.

Figure 1: A typical post made by a spambot

The crude nature of spambots also makes defense against them very easy. Their limited

understanding of a web page can be exploited to the defender’s purposes by posing a challenge

a glorified web page parser won’t understand—for instance, requiring JavaScript code to be run

prior to posting. Spam posted by humans will still get through, but the volume of affiliate

marketing spam
1
 (the primary driving force for such posts) is naturally limited by the number of

posts an affiliate can make in a day.

Our forum is susceptible for comment spam attacks, because we don’t require registration or

completing CAPTCHAs before posting. We love our forum that way, because it respects the

posters’ privacy and there are no annoying hoops to jump through. We use a homebrew

JavaScript solution as the spambot challenge, which does an excellent job separating humans

(who use actual, JavaScript-enabled web browsers) from spambots.

All things considered, we were confident that our spammer is a human being who’ll eventually

give up and move on. Only they didn’t. When we got bored of moderating their posts and started

1
 An affiliate marketing scheme where affiliates get paid for posting links to forums in order to drive traffic

to the advertisers’ website.

railing them into HTTP 500 errors, they kept on trying. This was remarkably unlike human

behavior and naturally posed the question: if they’re not human, then what is it that defeats our

JavaScript challenge?

This case study summarizes the short story of our investigation and our findings about the

sophisticated way of how our spammer simulates a true web browser for improved spam

deliverability. We also take a brief glimpse at possible options of defeating the spammers.

We use a fairly simple trick to separate humans from spambots: we insert an extra hidden field in

our comment form using JavaScript at runtime, which is verified by our server when the

comment is posted. The assumption is that humans use a “true web browser” like Google Chrome

or Mozilla Firefox and true web browsers run JavaScript just fine, sending along our extra field

with their post. Spambots, however, don’t understand JavaScript and will fail miserably on this

test.

In this particular case, we had a strong suspicion that the spambot has perfect understanding of

JavaScript and so our assumption no longer holds.

Investigating our spambot started with the requests it issued.

The bot itself operated in a fairly low-profile way, visiting 1-3 times a day, making only a handful

of posts in quick succession. This was consistent with the behavior of a human visitor, although

the posts were made slightly faster than expected from a human.

The format of the posts was the same all the time (see Figure 1), with links pointing to drug store

websites selling erectile dysfunction drugs. We collected a total of 128 distinct URLs from 1,485

total target URLs found in 400 posts. A manual examination showed that all, but 3 URLs pointed

to the website root path (/) and none of the URLs featured an Affiliate ID 1F

2 usually seen in affiliate

marketing spam URLs, which ruled out affiliate spam.

2
 In affiliate schemes, an Affiliate ID helps measuring the traffic driven by the affiliate, e.g.

http://example.org/?affiliate=58442 has an Affiliate ID “58442” embedded in the URL.

A cursory look at the web server logs revealed nothing extraordinary about our visitor. The

requests followed the same pattern as with any regular browser—fetching the HTML page was

followed by scripts, images, and other resources.

Figure 2: Requests in the web server logs

The User-Agent string was more interesting, though.

Mozilla/4.0 (Windows NT 6.2) AppleWebKit/537.17 (KHTML, like Gecko)

Chrome/24.0.1312.70 Safari/537.17

The string suggests that the browser is Google Chrome, running on either Microsoft ® Windows® 8

or Microsoft® Windows Server® 2012. However, the build number 24.0.1312.70 reveals that

something is off, because this build number belongs to a Linux-only release of Chrome 2F

3.

Indeed, when we looked up this User-Agent on the internet, we found a slightly different version:

Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.17 (KHTML, like Gecko)

Chrome/24.0.1312.70 Safari/537.17

which indicates a 64-bit Linux version of Chrome/Chromium.

This suggests that the User-Agent string was modified intentionally to cover up the actual browser

being used.

Our logs also had the spambot IP addresses recorded. To our surprise, we found that the

hundreds of spam comments came from just two IPs:

 5.79.73.142

 95.211.192.231

Neither of the IP addresses has reverse DNS information. They both belong to the network of

LeaseWeb B.V. 3F

4, a Netherlands-based hosting provider (we reported the hosts to

abuse@leaseweb.com).

We used the nmap tool to profile the spambot hosts. Operating system detection reported Linux

with high confidence. A partial port scan also reported the SSH port TCP/22 open, which further

supported Linux as the spambot host OS.

3
 Source: http://googlechromereleases.blogspot.com/2013/02/stable-channel-update_12.html

4
 RIPE WHOIS data retrieved via http://who.is on July 7, 2014.

http://nmap.org/
http://googlechromereleases.blogspot.com/2013/02/stable-channel-update_12.html
http://who.is/

It should be noted that these hosts are might have been hijacked HTTP proxies or virtual machine

hosts, so nmap results don’t necessarily indicate the OS used by the spammer.

Figure 3: nmap results for the spambot hosts (Linux with SSH port open)

Initial data suggested that some kind of browser running on a Linux host was responsible for our

comment spam. To gather more intelligence on the browser, we have extended our comment

form with a piece of JavaScript code that captured runtime browser information and sent it back

to our server. JavaScript provides a broad range of browser information for the inquisitive

developer, as demonstrated by http://browserspy.dk/.

In our first experiment we opted to capture certain basic properties of the window.navigator

object, the window object and the browser plugins. The spammer visited a short while after our

script was published and the data we captured showed some odd properties.

http://browserspy.dk/
https://developer.mozilla.org/en-US/docs/Web/API/Window.navigator
https://developer.mozilla.org/en-US/docs/Web/API/Window

Figure 4: Data captured about the spambot browser

We made the following observations:

 The window.navigator.onLine property is false. This property is supposed to report if

Internet connectivity is available. Chances are slim that the browser is offline while

posting to our pages online, so this was not the expected value.

 The windows.navigator.platform property is Linux x86_64, indicating that the browser

actually runs on a 64-bit version of Linux. This again contradicts the Windows 8 operating

system reported by the User-Agent string.

 The list of plugins is empty. In a way, this is not surprising—as per our tests, Internet

Explorer 11 and Chrome for Android don’t report any plugins. However, the desktop

Chrome browser the spambot claims to be should normally report at least a few plugins.

 Perhaps most tellingly, the window.outerWidth and window.outerHeight properties are both

0. These properties specify the browser window dimensions in pixels, so a zero value

suggests that there is no browser window to speak of.

At this point, we started suspecting that we are facing a custom version of Chrome / WebKit:

something that is not quite a true browser, but something very similar and something that was

built for automation.

Our research brought us to a special category of browsers called headless browsers. These are

barebone browser implementations, typically based on WebKit 5F

5 or Gecko 6F

6, used for a number of

purposes like automated website testing and taking web page screenshots. They are called

„headless”, because they don’t have a user interface like regular web browsers do. From all other

aspects, they are full-featured web browsers with the same understanding of HTML, JavaScript

and CSS as browser engine they are based on.

To see if a headless browser exhibits similar properties as our spambot, we ran an experiment

with one of the most popular headless browser called PhantomJS. In a couple of minutes, we

have managed to sketch up a proof-of-concept attack on our forums.

Figure 5: Our PhantomJS attack script, complete with User-Agent forgery and screenshot taking

The data we captured from PhantomJS was tellingly similar to that of our spambot: the browser

said it’s offline, no plugins were reported and both outerWidth and outerHeight were 0.

We started seeking out a way to detect if our script is being run in a sandbox of a headless

browser. Our initial idea was to capture and compare the browser features using a feature

detector like Modernizr to see if they exhibit a specific pattern distinguishable from desktop

browsers.

We did not get there eventually, because we found a much simpler way for detection. We worked

with embedded Internet Explorer before in ORF (Vamsoft’s email anti-spam product) and used

objects and functions exposed from the browser host application to the facilitate communication

between the host and the embedded browser. It was a long shot, but a quick test could be done

5
 WebKit is the engine behind Google Chrome and Apple Safari.

6
 Gecko is the engine of Mozilla Firefox.

http://phantomjs.org/
http://modernizr.com/
http://vamsoft.com/

in a minute to check if PhantomJS does the same. Sure enough, when our test enumerated all

functions on the JavaScript global object, we spotted one named callPhantom(). This function was

confirmed by PhantomJS documentation as a method specifically injected by the headless

browser. Another, broader search for objects found the _phantom object, which also belongs to

PhantomJS.

Figure 6: The callPhantom() function spotted by our test

This has provided us with a way to detect PhantomJS specifically, but we couldn’t possibly know

what kind of headless browser (if any!) is used by the spambot, so we further extended our

browser intel script in the forum with capturing all global functions and objects.

Half an hour after the extended script was published, the spambot visited again and the captured

data confirmed not only that our spambot uses a headless browser, but that it specifically uses

PhantomJS.

Figure 7: The _phantom object of PhantomJS in the data captured from the spambot

Our investigation concluded that our attacker uses a Linux build of PhantomJS to defeat our

JavaScript spam challenge. We looked for reports of headless browser usage in comment spam

and to our slight disappointment, we’re not the first to report this type of spam: the references

are sporadic, but the oldest we found is dates back to late 2013.

Digging further also found that PhantomJS was used in a massive botnet-based DDoS attack in Q3

2013. This suggests that large-scale abuse of headless browsers for malicious purposes is a quite

recent phenomenon and with room for further development. In fact, we expect that it to be

discovered by more criminals for more purposes, like click fraud.

The Q3 2013 DDoS attack also suggests that the technology has already been scaled to botnets,

so the spammers have access to nearly unlimited CPU and memory, which would normally limit

headless browser use. With the floodgates open, researchers are likely to experience a higher-

than-usual level of sophistication in future web attacks.

The few websites that rely exclusively on JavaScript-based “true browser vs. impostor” detection

need to either introduce additional layers of defense like CAPTCHAs, or need to be extended with

headless browser detection.

We contribute a very simple JavaScript-based approach for detecting PhantomJS:

function isPhantomJS() {

 return

!!window._phantom || // PhantomJS extends window object with _phantom

!!window.callPhantom; // Function injected by PhantomJS

}

During our research, we came across a post where StackOverflow user hexalys published exposed

objects for various headless browsers, which can be used to further extend the above script.

While this simple detection might work for now, it is easy to see how it can be defeated using a

custom build of PhantomJS with different function/object names, or by using another headless

http://stackoverflow.com/questions/20862728/reliably-detecting-phantomjs-based-spam-bots
http://www.darkreading.com/attacks-breaches/ddos-attack-used-headless-browsers-in-150-hour-siege/d/d-id/1140696?
http://stackoverflow.com/questions/20862728/reliably-detecting-phantomjs-based-spam-bots

browser. Spammers never lacked innovative power, so we have no doubt that any trivial

detection method will have limited lifetime and efficiency.

More sophisticated detection approaches might involve keyboard/mouse/touch interaction

monitoring, timing-based heuristics or capability/feature fingerprinting of the browser.

A special thanks go to Martijn Grooten, editor at Virus Bulletin for advising.

About Vamsoft

Vamsoft e-Security Kft. is the Budapest, Hungary-based vendor of ORF, an email spam filtering

solution available for Microsoft® Exchange and the IIS SMTP server. ORF provides a vast range of

tools for spam identification and comes with intuitive and detailed reporting features which enable

system administrators to overview and manage spam threats with unprecedented ease. ORF is used

in 112 countries around the world by SMBs, enterprises and governmental institutions.

